z-logo
Premium
R s ‐bounded H ∞ ‐calculus for sectorial operators via generalized Gaussian estimates
Author(s) -
Kunstmann Peer Christian,
Ullmann Alexander
Publication year - 2015
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201300132
Subject(s) - mathematics , bounded function , time scale calculus , differential calculus , semigroup , calculus (dental) , holomorphic functional calculus , gaussian , pure mathematics , algebra over a field , multivariable calculus , mathematical analysis , finite rank operator , banach space , medicine , physics , dentistry , quantum mechanics , control engineering , engineering
We show that, for negative generators of analytic semigroups, a bounded H ∞ ‐calculus self‐improves to an R s ‐bounded H ∞ ‐calculus in an appropriate scale of L p ‐spaces if the semigroup satisfies suitable generalized Gaussian estimates . As application of our result we obtain that large classes of differential operators have an R s ‐bounded H ∞ ‐calculus.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom