Premium
Uniqueness results for semilinear elliptic systems on R n
Author(s) -
Mandel Rainer
Publication year - 2014
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201300130
Subject(s) - uniqueness , mathematics , nonlinear system , energy (signal processing) , component (thermodynamics) , mathematical analysis , pure mathematics , physics , statistics , quantum mechanics , thermodynamics
In this paper we establish uniqueness criteria for positive radially symmetric finite energy solutions of semilinear elliptic systems of the form− Δ u=f ( | x | , u , v )inR n ,− Δ v=f ( | x | , v , u )inR n .As an application we consider the nonlinear Schrödinger system− Δ u + u=u 2 q − 1 + b u q − 1v qinR n ,− Δ v + v=v 2 q − 1 + b v q − 1u qinR n ,for b > 0 and exponents q which satisfy 1 < q < ∞ in case n ∈ { 1 , 2 } and 1 < q < n n − 2in case n ≥ 3 . Generalizing the results of Wei and Yao for q = 2 we find new sufficient conditions and necessary conditions on b , q , n such that precisely one positive solution exists. Our results dealing with the special case n = 1 are optimal. Finally, an application to a multi‐component nonlinear Schrödinger system is given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom