z-logo
Premium
On an elementary operator with M ‐hyponormal operator entries
Author(s) -
Rashid M. H. M.
Publication year - 2015
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201300095
Subject(s) - mathematics , operator (biology) , hilbert space , weak operator topology , quasinormal operator , multiplication operator , pure mathematics , compact operator , shift operator , algebra over a field , finite rank operator , discrete mathematics , banach space , extension (predicate logic) , biochemistry , chemistry , repressor , computer science , transcription factor , gene , programming language
A Hilbert space operator T ∈ L ( H ) is M ‐hyponormal if there exists a positive real number M such that( T − μ )( T − μ ) * ≤ M 2( T − μ ) * ( T − μ )for all μ ∈ σ ( T ) . Let A , B * ∈ L ( H )be M ‐hyponormal and letd A B ∈ L ( L ( H ) )denote either the generalized derivationδ A B( X ) = A X − X B or the elementary operatorΔ A B = A X B − X . We prove that if A , B *are M ‐hyponormal, then f ( d A B ) satisfies the generalized Weyl's theorem and f ( d A B * ) satisfies the generalized a ‐Weyl's theorem for every f that is analytic on a neighborhood of σ ( d A B ) .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom