Premium
Dimension of images of subspaces under mappings in Triebel‐Lizorkin spaces
Author(s) -
Hencl Stanislav,
Honzík Petr
Publication year - 2014
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201300015
Subject(s) - mathematics , linear subspace , hausdorff dimension , dimension (graph theory) , hausdorff space , space (punctuation) , value (mathematics) , packing dimension , pure mathematics , construct (python library) , minkowski–bouligand dimension , mathematical analysis , statistics , fractal dimension , fractal , computer science , programming language , operating system
Let m < α < p and let f : R n → R kbe a s , p ‐quasicontinuous representative of a mapping in the Triebel‐Lizorkin space F p , q s . We find an optimal value of β ( n , m , p , α , s ) such that for H β a.e. y ∈ ( 0 , 1 ) n − mthe Hausdorff dimension of f ( ( 0 , 1 ) m × { y } ) is at most α. We construct examples to show that the value of β is optimal and we show that it does not increase once p goes below the critical value α.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom