z-logo
Premium
A refinement of the Hodge stratification for connected reductive groups
Author(s) -
Neupert Stephan
Publication year - 2014
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201300013
Subject(s) - mathematics , stratification (seeds) , abelian group , extension (predicate logic) , pure mathematics , reductive group , moduli space , moduli , botany , group theory , biology , dormancy , computer science , physics , quantum mechanics , seed dormancy , germination , programming language
For connected reductive groups G over a finite extension F of Q p and L the maximal unramified extension of F we study the setsH μ ̲ , N( G )of elements b ∈ G ( L ) with given Hodge points( b σ ) , ( b σ ) 2 , ... , ( b σ ) N . We explain the relationship to stratifications of some moduli scheme of abelian varieties defined by Goren and Oort respectively Andreatta and Goren. We show that for sufficiently large N the Newton point is constant on the setsH μ ̲ , N( G )and compute such N for certain classes of groups.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom