Premium
A refinement of the Hodge stratification for connected reductive groups
Author(s) -
Neupert Stephan
Publication year - 2014
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201300013
Subject(s) - mathematics , stratification (seeds) , abelian group , extension (predicate logic) , pure mathematics , reductive group , moduli space , moduli , botany , group theory , biology , dormancy , computer science , physics , quantum mechanics , seed dormancy , germination , programming language
For connected reductive groups G over a finite extension F of Q p and L the maximal unramified extension of F we study the setsH μ ̲ , N( G )of elements b ∈ G ( L ) with given Hodge points( b σ ) , ( b σ ) 2 , ... , ( b σ ) N . We explain the relationship to stratifications of some moduli scheme of abelian varieties defined by Goren and Oort respectively Andreatta and Goren. We show that for sufficiently large N the Newton point is constant on the setsH μ ̲ , N( G )and compute such N for certain classes of groups.