z-logo
Premium
Generalized fractional integrals on generalized Morrey spaces
Author(s) -
Nakai Eiichi
Publication year - 2014
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201200334
Subject(s) - mathematics , generalization , pure mathematics , maximal operator , operator (biology) , type (biology) , maximal function , variable (mathematics) , mathematical analysis , bounded function , ecology , biochemistry , chemistry , repressor , biology , transcription factor , gene
On generalized Morrey spaces with variable exponent p : R n → [ 1 , ∞ )and variable growth function φ : R n × ( 0 , ∞ ) → ( 0 , ∞ )the boundedness of generalized fractional integral operators I ρ is established, where ρ : R n × ( 0 , ∞ ) → ( 0 , ∞ ) . The result is a generalization of the theorems of Adams [1] (1975) and Gunawan [11] (2003). Moreover, we prove weak type boundedness. To do this we first prove the boundedness of the Hardy‐Littlewood maximal operator on the generalized Morrey spaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here