z-logo
Premium
Lorentz spaces with variable exponents
Author(s) -
Kempka Henning,
Vybíral Jan
Publication year - 2014
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201200278
Subject(s) - mathematics , lorentz transformation , lp space , interpolation space , pure mathematics , variable (mathematics) , interpolation (computer graphics) , lorentz space , mathematical analysis , frame (networking) , banach space , functional analysis , classical mechanics , telecommunications , biochemistry , chemistry , physics , computer science , gene
We introduce Lorentz spacesL p ( · ) , q( R n )andL p ( · ) , q ( · )( R n )with variable exponents. We prove several basic properties of these spaces including embeddings and the identityL p ( · ) , p ( · )( R n ) = L p ( · )( R n ) . We also show that these spaces arise through real interpolation betweenL p ( · )( R n )andL ∞ ( R n ) . Furthermore, we answer in a negative way the question posed in [12][L. Diening, ] whether the Marcinkiewicz interpolation theorem holds in the frame of Lebesgue spaces with variable integrability.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here