z-logo
Premium
Global L p estimates for degenerate Ornstein‐Uhlenbeck operators with variable coefficients
Author(s) -
Bramanti M.,
Cupini G.,
Lanconelli E.,
Priola E.
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201200189
Subject(s) - mathematics , bounded function , combinatorics , operator (biology) , degenerate energy levels , mathematical physics , physics , mathematical analysis , quantum mechanics , chemistry , biochemistry , repressor , transcription factor , gene
We consider a class of degenerate Ornstein‐Uhlenbeck operators in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^{N}\!$\end{document} , of the kind\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \mathcal {A}\equiv \sum _{i,j=1}^{p_{0}}a_{ij}(x) \partial _{x_{i}x_{j}}^{2}+\sum _{i,j=1}^{N}b_{ij}x_{i}\partial _{x_{j}} $$ \end{document} where ( a ij ) is symmetric uniformly positive definite on \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^{p_{0}}$\end{document} ( p 0 ≤ N ), with uniformly continuous and bounded entries, and ( b ij ) is a constant matrix such that the frozen operator \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {A}_{x_{0}}$\end{document} corresponding to a ij ( x 0 ) is hypoelliptic. For this class of operators we prove global L p estimates (1 < p < ∞) of the kind:\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \big \Vert \partial _{x_{i}x_{j}}^{2}u\big \Vert _{L^{p}\left( \mathbb {R} ^{N}\right) }\le c\left\lbrace \left\Vert \mathcal {A}u\right\Vert _{L^{p}\left( \mathbb {R}^{N}\right) }+\left\Vert u\right\Vert _{L^{p}\left( \mathbb {R} ^{N}\right) }\right\rbrace \quad \mbox{for}\quad i,j=1,2,\ldots ,p_{0}. $$ \end{document} We obtain the previous estimates as a byproduct of the following one, which is of interest in its own:\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \big \Vert \partial _{x_{i}x_{j}}^{2}u\big \Vert _{L^{p}\left( S_{T}\right) }\le c\left\lbrace \left\Vert Lu\right\Vert _{L^{p}\left( S_{T}\right) }+\left\Vert u\right\Vert _{L^{p}\left( S_{T}\right) }\right\rbrace \quad \mbox{for}\quad i,j=1,2,\ldots ,p_{0}, $$ \end{document} for any \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$u\in C_{0}^{\infty }\!\left( S_{T}\right) ,$\end{document} where S T is the strip \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^{N}\times \left[-T,T\right]$\end{document} , T small, and L is the Kolmogorov‐Fokker‐Planck operator\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ L\equiv \sum _{i,j=1}^{p_{0}}a_{ij}(x,t) \partial _{x_{i}x_{j}} ^{2}+\sum _{i,j=1}^{N}b_{ij}x_{i}\partial _{x_{j}}-\partial _{t} $$ \end{document} with uniformly continuous and bounded a ij 's.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom