z-logo
Premium
Convexity characteristic of Calderón–Lozanovskiĭ sequence spaces
Author(s) -
Yan Yaqiang,
Hou Zhentao
Publication year - 2014
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201200170
Subject(s) - mathematics , sequence (biology) , convexity , monotone polygon , sequence space , measure (data warehouse) , space (punctuation) , regular polygon , order (exchange) , pure mathematics , combinatorics , convex function , lorentz transformation , function (biology) , continuous function (set theory) , mathematical analysis , geometry , banach space , linguistics , philosophy , genetics , physics , finance , classical mechanics , database , evolutionary biology , computer science , financial economics , economics , biology
Hudzik, Kamińska and Mastyło obtained some geometric properties of Calderón–Lozanovskiĭ function spaces which are defined on a nonatomic σ‐measure space ( Ω , Σ , μ ) in Houston. J. Math. 22 (1996), but left the case of atomic measure unsolved. We studied the relevant problems for the sequence spaces and obtained the following main results: For the Calderón–Lozanovskiĭ sequence spacese Φ , e Φis order continuous if and only ifΦ ∈ δ 2and e is order continuous . Let Φ be strictly convex on[ 0 , u b ] , then the convex characteristicε 0 ( e Φ ) = 2whenever e is not order continuous orΦ ∉ δ 2 ; if e is uniformly monotone andΦ ∈ δ 2 , thenε 0 ( e Φ ) ≤ 2 ( 1 − p ( Φ ) ) 1 + p ( Φ ). For the Orlicz‐Lorentz sequence spaceλ Φ , ω ,ε 0 ( λ Φ , ω ) = 2ifΦ ∉ δ 2orΨ ∉ δ 2 , or ω is not regular ;ε 0 ( λ Φ , ω ) = 2 ( 1 − p ( Φ ) ) 1 + p ( Φ )if Φ is strictly convex on0 , Φ − 11 ω 1, Φ ∈ δ 2and ω is regular .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom