Premium
Spectral functions of products of selfadjoint operators
Author(s) -
Ya. Azizov T.,
Denisov M.,
Philipp F.
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201200169
Subject(s) - mathematics , resolvent , gravitational singularity , operator (biology) , spectrum (functional analysis) , polynomial , function (biology) , pure mathematics , spectral theorem , spectral properties , operator theory , mathematical analysis , quantum mechanics , physics , biochemistry , chemistry , repressor , evolutionary biology , biology , astrophysics , transcription factor , gene
Given two possibly unbounded selfadjoint operators A and G such that the resolvent sets of AG and GA are non‐empty, it is shown that the operator AG has a spectral function on \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb R$\end{document} with singularities if there exists a polynomial p ≠ 0 such that the symmetric operator Gp ( AG ) is non‐negative. This result generalizes a well‐known theorem for definitizable operators in Krein spaces.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom