z-logo
Premium
Anti‐periodic solutions for a gradient system with resonance via a variational approach
Author(s) -
Tian Yu,
Henderson Johnny
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201200110
Subject(s) - mathematics , eigenvalues and eigenvectors , action (physics) , boundary value problem , mathematical analysis , resonance (particle physics) , dual (grammatical number) , periodic boundary conditions , order (exchange) , boundary values , principle of least action , classical mechanics , physics , art , literature , particle physics , quantum mechanics , finance , economics
In this paper, we investigate a second‐order resonance anti‐periodic boundary value problemq ̈ ( t ) + λ m q ( t ) + ∇ F ( t , q ( t ) ) = 0 , t ∈ [ 0 , T ] ,q ( 0 ) = − q ( T ) ,q ̇ ( 0 ) = − q ̇ ( T ) ,where λ m is the m ‐th eigenvalue of the corresponding eigenvalue problem. By using the dual least action principle, we obtain an existence result. In addition, we obtain the existence of 2T‐periodic solutions forq ̈ ( t ) + λ m q ( t ) + ∇ F ( t , q ( t ) ) = 0 , t ∈ R .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom