z-logo
Premium
Regularity of the \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\overline{\partial }}$\end{document} ‐equation and Liouville's theorem for pseudoconcave compacts in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${{\mathbb {C}}{\mathbb {P}}^n}$\end{document}
Author(s) -
Brinkschulte Judith
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201200104
Subject(s) - boundary (topology) , physics , domain (mathematical analysis) , combinatorics , mathematics , mathematical physics , mathematical analysis
We prove regularity results for the \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\overline{\partial }$\end{document} ‐equation for \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {O}(-m)$\end{document} ‐valued forms in the Sobolev spaces W 1 − ε on pseudoconcave domains with \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {C}^2$\end{document} boundary in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {C}}{\mathbb {P}}^n$\end{document} . We also show that the holomorphic sections of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {O}(-m)$\end{document} of class W 1 − ε vanish on a pseudoconcave domain with \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {C}^2$\end{document} boundary in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {C}}{\mathbb {P}}^n$\end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom