z-logo
Premium
Truncated Hamburger moment problem for an operator measure with compact support
Author(s) -
Arlinskiĭ Yury
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201200028
Subject(s) - mathematics , holomorphic function , operator (biology) , bounded function , uniqueness , separable space , moment (physics) , measure (data warehouse) , bounded operator , pure mathematics , holomorphic functional calculus , hilbert space , transformation (genetics) , combinatorics , mathematical analysis , finite rank operator , banach space , biochemistry , chemistry , physics , repressor , classical mechanics , computer science , transcription factor , gene , database
Given bounded selfadjoint operators \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$F_1=I_{\mathfrak N}$\end{document} , F 2 , …, F 2 n + 1 in a separable Hilbert space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak N$\end{document} , we consider the operator truncated Hamburger moment problem of finding a Herglotz‐Nevanlinna operator‐valued function M holomorphic in the neighborhood of infinity and having the form\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ M(z)=-\sum \limits _{k=1}^{2n+1}z^{-k} F_k +o\big (z^{-2n-1}\big ), \quad z\longrightarrow \infty . $$ \end{document} Criteria of the solvability and uniqueness of the solution are established and a description of all solutions is obtained. Our approach is based on the Schur transformation, the Schur parameters, and the special block operator Jacobi matrices.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here