Premium
A Hölder continuity result for a class of obstacle problems under non standard growth conditions
Author(s) -
Eleuteri Michela,
Habermann Jens
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201190024
Subject(s) - mathematics , omega , function (biology) , combinatorics , modulus of continuity , hölder condition , exponent , space (punctuation) , class (philosophy) , mathematical analysis , type (biology) , physics , philosophy , quantum mechanics , ecology , linguistics , epistemology , evolutionary biology , biology
We prove C 0, α regularity for local minimizers u of functionals with p ( x )‐growth of the type\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ {\mathcal F}(w,\Omega ) := \int _\Omega f(x,w(x),Dw(x))\, dx, $$ \end{document} in the class \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$K :=\lbrace w \in W^{1,p(\cdot )}(\Omega ;{\mathbb R}): w \ge \psi \rbrace$\end{document} , where the exponent function p : Ω → (1, ∞) is assumed to be continuous with a modulus of continuity satisfying\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \limsup _{\rho \rightarrow 0} \omega (\rho )\log \left(\frac{1}{\rho }\right) < +\infty , $$ \end{document} and 1 < γ 1 ⩽ p ( x ) ≤ γ 2 < +∞. Moreover, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\psi \in W^{1,1}_{\textnormal {loc}}(\Omega )$\end{document} is a given obstacle function, whose gradient D ψ belongs to a Morrey space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L_{\textnormal {loc}}^{q,\lambda }(\Omega )$\end{document} with n − γ 1 < λ < n and q > γ 2 . We do not assume any quantitative continuity of the integrand function f .