z-logo
Premium
A Hölder continuity result for a class of obstacle problems under non standard growth conditions
Author(s) -
Eleuteri Michela,
Habermann Jens
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201190024
Subject(s) - mathematics , omega , function (biology) , combinatorics , modulus of continuity , hölder condition , exponent , space (punctuation) , class (philosophy) , mathematical analysis , type (biology) , physics , philosophy , quantum mechanics , ecology , linguistics , epistemology , evolutionary biology , biology
We prove C 0, α regularity for local minimizers u of functionals with p ( x )‐growth of the type\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ {\mathcal F}(w,\Omega ) := \int _\Omega f(x,w(x),Dw(x))\, dx, $$ \end{document} in the class \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$K :=\lbrace w \in W^{1,p(\cdot )}(\Omega ;{\mathbb R}): w \ge \psi \rbrace$\end{document} , where the exponent function p : Ω → (1, ∞) is assumed to be continuous with a modulus of continuity satisfying\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \limsup _{\rho \rightarrow 0} \omega (\rho )\log \left(\frac{1}{\rho }\right) < +\infty , $$ \end{document} and 1 < γ 1 ⩽ p ( x ) ≤ γ 2 < +∞. Moreover, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\psi \in W^{1,1}_{\textnormal {loc}}(\Omega )$\end{document} is a given obstacle function, whose gradient D ψ belongs to a Morrey space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L_{\textnormal {loc}}^{q,\lambda }(\Omega )$\end{document} with n − γ 1 < λ < n and q > γ 2 . We do not assume any quantitative continuity of the integrand function f .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom