z-logo
Premium
Isometries between Sobolev spaces
Author(s) -
Biegert Markus,
Nittka Robin
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201190020
Subject(s) - mathematics , isometry (riemannian geometry) , sobolev space , bounded function , boundary (topology) , combinatorics , omega , space (punctuation) , mathematical analysis , physics , quantum mechanics , linguistics , philosophy
Let Ω 1 and Ω 2 be bounded, connected open sets in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^N$\end{document} with continuous boundary, and let p > 2. We show that every positive linear isometry T from W 1, p (Ω 1 ) to W 1, p (Ω 2 ) that satisfies \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$W^{1,p}_0(\Omega _2) \subset TW^{1,p}_0(\Omega _1)$\end{document} corresponds to a rigid motion of the space, i.e., Tu = u ○ξ for an isometry ξ of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^N$\end{document} , and more precisely ξ(Ω 2 ) = Ω 1 . We also prove similar results for less regular domains, and we obtain partial results also for p = 2.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom