Premium
On irreducible p , q ‐representations of Lie algebras \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G} (0,1)$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G} (0,0)$\end{document}
Author(s) -
Sahai Vivek,
Yadav Sarasvati
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100327
Subject(s) - mathematics , combinatorics , lie algebra , function (biology) , mathematical physics , pure mathematics , biology , evolutionary biology
In this paper, the irreducible p , q ‐representations of the Lie algebras \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G}(0,1)$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G}(0,0)$\end{document} are discussed. We prove two theorems that classify certain irreducible p , q ‐representations of these Lie algebras and construct their one variable models in terms of p , q ‐derivative and dilation operators. As an application, we derive a p , q ‐special function identity based on one such model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom