Premium
On irreducible p , q ‐representations of Lie algebras \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G} (0,1)$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G} (0,0)$\end{document}
Author(s) -
Sahai Vivek,
Yadav Sarasvati
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100327
Subject(s) - mathematics , combinatorics , lie algebra , function (biology) , mathematical physics , pure mathematics , biology , evolutionary biology
In this paper, the irreducible p , q ‐representations of the Lie algebras \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G}(0,1)$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G}(0,0)$\end{document} are discussed. We prove two theorems that classify certain irreducible p , q ‐representations of these Lie algebras and construct their one variable models in terms of p , q ‐derivative and dilation operators. As an application, we derive a p , q ‐special function identity based on one such model.