z-logo
Premium
Exact subcategories of the category of locally convex spaces
Author(s) -
Dierolf Bernhard,
Sieg Dennis
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100325
Subject(s) - mathematics , combinatorics , prime (order theory) , regular polygon , physics , geometry
In this paper we present a characterization whether the restriction \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}^{\prime }:=\lbrace (f,g)\in \mathcal {E}\,\,|\,\,f,g\in \mbox{Mor}({\mathcal {C}}^{\prime })\rbrace$\end{document} of the exact structure \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}$\end{document} of an exact category \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$({\mathcal {C}},\mathcal {E})$\end{document} in the sense of Quillen on a full additive subcategory \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal {C}}^{\prime }$\end{document} of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal {C}}$\end{document} is again an exact structure. We apply our characterization to the exact structure \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}^{top}_{\mbox{LCS}}$\end{document} of short topologically exact sequences in the quasi‐abelian category \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mbox{LCS}$\end{document} of locally convex spaces and subcategories thereof.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom