z-logo
Premium
Weighted Hardy spaces and BMO spaces associated with Schrödinger operators
Author(s) -
Liu Heping,
Tang Lin,
Zhu Hua
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100323
Subject(s) - hardy space , mathematics , omega , space (punctuation) , operator (biology) , measure (data warehouse) , combinatorics , schrödinger's cat , mathematical physics , mathematical analysis , physics , quantum mechanics , chemistry , philosophy , computer science , linguistics , biochemistry , repressor , database , transcription factor , gene
In this paper, we characterize the weighted Hardy space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$H_{\mathcal {L}}^{1}(\omega )$\end{document} related to the Schrödinger operator \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}=-\Delta +V$\end{document} , with V a non‐negative potential satisfying a reverse Hölder inequality, by atomic decomposition and Riesz transforms. We also get a characterization of its dual space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$B\hspace*{-1.0pt}M\hspace*{-1.0pt}O_{\mathcal {L}}(\omega )$\end{document} through a weighted Carleson measure. Then we prove the boundedness of some classical operators associated to \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {L}$\end{document} on the weighted BMO space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$B\hspace*{-1.0pt}M\hspace*{-1.0pt}O_{\mathcal {L}}(\omega )$\end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom