z-logo
Premium
On some bilinear problems on weighted Hardy‐Sobolev spaces
Author(s) -
Cascante C.,
Ortega J. M.
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100298
Subject(s) - mathematics , sobolev space , bilinear interpolation , hardy space , pure mathematics , mathematical analysis , statistics
In this paper we study the bilinear problem of characterizing the positive Borel measures μ on S n , satisfying\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \left|\int _{{\bf S}^n}f \overline{g }\,d\mu \right|\le C\Vert f\Vert _{H_s^2(w)}\Vert g\Vert _{H_t^2(w)}, $$ \end{document} where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$H_s^2(w)$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$H_t^2(w)$\end{document} are weighted Hardy‐Sobolev spaces, under adequate conditions on the weight w .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom