z-logo
Premium
On some bilinear problems on weighted Hardy‐Sobolev spaces
Author(s) -
Cascante C.,
Ortega J. M.
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100298
Subject(s) - mathematics , sobolev space , bilinear interpolation , hardy space , pure mathematics , mathematical analysis , statistics
In this paper we study the bilinear problem of characterizing the positive Borel measures μ on S n , satisfying\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \left|\int _{{\bf S}^n}f \overline{g }\,d\mu \right|\le C\Vert f\Vert _{H_s^2(w)}\Vert g\Vert _{H_t^2(w)}, $$ \end{document} where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$H_s^2(w)$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$H_t^2(w)$\end{document} are weighted Hardy‐Sobolev spaces, under adequate conditions on the weight w .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here