Premium
On the images of Sobolev spaces under the heat kernel transform on the Heisenberg group
Author(s) -
Radha R.,
Thangavelu S.,
Naidu D. Venku
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100233
Subject(s) - mathematics , sobolev space , heisenberg group , pointwise , heat kernel , hilbert space , kernel (algebra) , order (exchange) , space (punctuation) , group (periodic table) , combinatorics , image (mathematics) , mathematical analysis , physics , quantum mechanics , linguistics , philosophy , finance , artificial intelligence , computer science , economics
The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$H^m(\mathbb {H}^n), m\in \mathbb {N}^n,$\end{document} under the heat kernel transform on \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {H}^n,$\end{document} using direct sum and direct integral of Bergmann spaces and certain unitary representations of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {H}^n$\end{document} which can be realized on the Hilbert space of Hilbert‐Schmidt operators on \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^2(\mathbb {R}^n).$\end{document} We also show that the image of Sobolev space of negative order \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$H^{-s}(\mathbb {H}^n), s(>0) \in \mathbb {R}$\end{document} is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {H}^n$\end{document} under the heat kernel transform.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom