Premium
Entropy numbers of operators acting between vector‐valued sequence spaces
Author(s) -
Edmunds David E.,
Netrusov Yuri
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100195
Subject(s) - mathematics , omega , embedding , combinatorics , sequence (biology) , entropy (arrow of time) , real number , pure mathematics , physics , computer science , quantum mechanics , artificial intelligence , biology , genetics
Entropy numbers of operators acting between vector‐valued sequence spaces are estimated using information about the coordinate mappings. To do this some new ideas of combinatorial type are used. The results are applied to give sharp two‐sided estimates of the entropy numbers of some embeddings of Besov spaces. For instance, our main result allows us to give exact two‐sided estimates of the entropy numbers of the natural embedding of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$B_{p_{1},\theta _{1}}^{\omega _{1}}(Q)$\end{document} in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$B_{p_{2},\theta _{2} }^{\omega _{2}}(Q),$\end{document} where Q = (0, 1) d ; θ 1 , θ 2 , p 1 , p 2 ∈ (0, ∞], when the condition 1/θ 1 − 1/θ 2 ≥ 1/ p 1 − 1/ p 2 > 0 is satisfied. This work enables us to construct an example showing that the behaviour under real interpolation of entropy numbers can be even worse than in the example of 7.