Premium
Asymptotics of solutions of the heat equation in cones and dihedra
Author(s) -
Kozlov V. A.,
Rossmann J.
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100192
Subject(s) - mathematics , remainder , sobolev space , heat equation , mathematical analysis , boundary (topology) , pure mathematics , combinatorics , mathematical physics , arithmetic
The authors deal with the asymptotics of solutions of the first boundary value problem for the heat equation near vertices of cones or edges. They obtain estimates for the remainder in weighted L p , q Sobolev spaces. The paper generalizes the main result of Kozlov and Maz’ya 6 to the case \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$p,q\not=2$\end{document} and to edges.