z-logo
Premium
On the Aut ( A 2 ) ‐action on G‐semistable locally free sheaves on P 2
Author(s) -
Miesener Michael
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100158
Subject(s) - mathematics , moduli space , lemma (botany) , divisor (algebraic geometry) , rank (graph theory) , pure mathematics , action (physics) , combinatorics , botany , physics , poaceae , quantum mechanics , biology
We show that the divisor of jumping lines Σ E of any E ∈ Q lf ( n ) , the moduli space of Gieseker‐semistable locally free sheaves of rank 2 on P 2 with( c 1 , c 2 ) = ( 0 , n ) , is reduced for n ≤ 4 . By a lemma of Artamkin this implies, that there are exactly n − 1A u t ( A 2 ) ‐orbits inM lf ( n ) ⊂ Q lf ( n ) , the subset of those E , which are trivial at a certain line l ∞ .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom