z-logo
Premium
Pointwise multipliers of Calderón‐Lozanovskiǐ spaces
Author(s) -
Kolwicz Paweł,
Leśnik Karol,
Maligranda Lech
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100156
Subject(s) - pointwise , mathematics , banach space , space (punctuation) , function space , function (biology) , combinatorics , order (exchange) , pure mathematics , mathematical analysis , philosophy , linguistics , finance , evolutionary biology , economics , biology
Several results concerning multipliers of symmetric Banach function spaces are presented firstly. Then the results on multipliers of Calderón‐Lozanovskiǐ spaces are proved. We investigate assumptions on a Banach ideal space E and three Young functions φ 1 , φ 2 and φ, generating the corresponding Calderón‐Lozanovskiǐ spaces \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$E_{\varphi _1}, E_{\varphi _2}, E_{\varphi }$\end{document} so that the space of multipliers \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$M(E_{\varphi _1}, E_{\varphi })$\end{document} of all measurable x such that x   y ∈ E φ for any \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$y \in E_{\varphi _1}$\end{document} can be identified with \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$E_{\varphi _2}$\end{document} . Sufficient conditions generalize earlier results by Ando, O'Neil, Zabreǐko‐Rutickiǐ, Maligranda‐Persson and Maligranda‐Nakai. There are also necessary conditions on functions for the embedding \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$M(E_{\varphi _1}, E_{\varphi }) \subset E_{\varphi _2}$\end{document} to be true, which already in the case when E = L 1 , that is, for Orlicz spaces \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$M(L^{\varphi _1}, L^{\varphi }) \subset L^{\varphi _2}$\end{document} give a solution of a problem raised in the book 26. Some properties of a generalized complementary operation on Young functions, defined by Ando, are investigated in order to show how to construct the function φ 2 such that \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$M(E_{\varphi _1}, E_{\varphi }) = E_{\varphi _2}$\end{document} . There are also several examples of independent interest.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here