Premium
Convolution operators on spaces of real analytic functions
Author(s) -
Langenbruch Michael
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100155
Subject(s) - mathematics , convolution (computer science) , combinatorics , inverse , prime (order theory) , geometry , computer science , machine learning , artificial neural network
Let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$I\subset \mathbb {R}$\end{document} be an open interval and let \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mu \in A(\mathbb {R})^{\prime }$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$G:=\mbox{conv}(\mbox{supp}(\mu ))$\end{document} . We characterize the surjectivity of the convolution operator T μ : A ( I − G ) → A ( I ) by means of a new estimate from below for the Fourier transform \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\widehat{\mu }$\end{document} valid on conical subsets of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {C}\setminus \mathbb {R}$\end{document} . We also characterize when T μ admits a continuous linear right inverse.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom