z-logo
Premium
Weak type (p,q) ‐inequalities for the Haar system and differentially subordinated martingales
Author(s) -
Oseçkowski Adam
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100144
Subject(s) - combinatorics , mathematics , type (biology) , separable space , mathematical physics , mathematical analysis , ecology , biology
For any \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$1\leq p,\,q<\infty$\end{document} , we determine the optimal constant \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$C_{p,q}$\end{document} such that the following holds. If \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$(h_k)_{k\geq 0}$\end{document} is the Haar system on [0,1], then for any vectors a k from a separable Hilbert space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal{H}$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\varepsilon_k\in \{-1,1\}$\end{document} , \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$k=0,\,1,\,2,\ldots,$\end{document} we have\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \Bigg\|\sum_{k=0}^n \varepsilon_ka_kh_k\Bigg\|_{q,\infty}\leq C_{p,q}\Bigg\|\sum_{k=0}^n a_kh_k\Bigg\|_p. $$ \end{document} This is generalized to the sharp weak‐type inequality\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \|Y\|_{q,\infty}\leq C_{p,q}\|X\|_p, $$ \end{document} where X , Y stand for \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal{H}$\end{document} ‐valued martingales such that Y is differentially subordinate to X .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom