z-logo
Premium
Calderón‐type theorems for operators with non‐standard endpoint behavior on Lorentz spaces
Author(s) -
Malý Lukáš
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201100095
Subject(s) - bounded function , mathematics , lorentz space , lorentz transformation , type (biology) , operator (biology) , bounded operator , space (punctuation) , invariant (physics) , mathematical physics , combinatorics , mathematical analysis , physics , quantum mechanics , ecology , biochemistry , chemistry , linguistics , philosophy , repressor , gene , transcription factor , biology
The Calderón theorem states that every quasilinear operator, which is bounded both from \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^{p_1,1}$\end{document} to \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^{q_1,\infty }$\end{document} , and from \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^{p_2,1}$\end{document} to \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^{q_2,\infty }$\end{document} for properly ordered values of p 1 , p 2 , q 1 , q 2 , is bounded on some rearrangement‐invariant space if and only if the so‐called Calderón operator is bounded on the corresponding representation space. We will establish Calderón‐type theorems for non‐standard endpoint behavior, where Lorentz Λ and M spaces will be the endpoints of the interpolation segment. Two distinctive types of non‐standard behavior are to be discussed; we’ll explore the operators bounded both from Λ( X 1 ) to Λ( Y 1 ), and from Λ( X 2 ) to M ( Y 2 ) using duality arguments, thus, we need to study the operators bounded both from Λ( X 1 ) to M ( Y 1 ), and from M ( X 2 ) to M ( Y 2 ) first. For that purpose, we evaluate Peetre's K ‐functional for varied pairs of Lorentz spaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here