z-logo
Premium
Traces of Besov and Triebel‐Lizorkin spaces on domains
Author(s) -
Schneider Cornelia
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201010052
Subject(s) - trace (psycholinguistics) , limiting , omega , boundary (topology) , mathematics , combinatorics , physics , mathematical analysis , philosophy , quantum mechanics , mechanical engineering , linguistics , engineering
We determine the trace of Besov spaces \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathfrak {B}^s_{p,q}(\Omega )$\end{document} and Triebel‐Lizorkin spaces \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathfrak {F}^s_{p,q}(\Omega )$\end{document} , characterized via atomic decompositions, on the boundary of C k domains Ω for parameters 0 < p , q ⩽ ∞ and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$s>\frac{1}{p}$\end{document} . The limiting case \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$s=\frac{1}{p}$\end{document} is investigated as well. In terms of Besov spaces our results remain valid for the classical spaces B s p , q (Ω) defined via differences. Furthermore, we include some density assertions, which imply that the trace does not exist when \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$s<\frac{1}{p}$\end{document} . © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom