Premium
Homogeneous polynomials and extensions of Hardy‐Hilbert's inequality
Author(s) -
Anagnostopoulos Vasileios A.,
Sarantopoulos Yannis,
Tonge Andrew M.
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201010035
Subject(s) - mathematics , hermitian matrix , homogeneous , hilbert space , trigonometry , norm (philosophy) , polynomial , homogeneous polynomial , combinatorics , pure mathematics , algebra over a field , mathematical analysis , matrix polynomial , political science , law
If L is a continuous symmetric n ‐linear form on a real or complex Hilbert space and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\widehat{L}$\end{document} is the associated continuous n ‐homogeneous polynomial, then \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\Vert L\Vert =\big \Vert \widehat{L}\big \Vert$\end{document} . We give a simple proof of this well‐known result, which works for both real and complex Hilbert spaces, by using a classical inequality due to S. Bernstein for trigonometric polynomials. As an application, an open problem for the optimal lower bound of the norm of a homogeneous polynomial, which is a product of linear forms, is related to the so‐called permanent function of an n × n positive definite Hermitian matrix. We have also derived generalizations of Hardy‐Hilbert's inequality.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom