z-logo
Premium
The higher order Riesz transform and BMO type space associated to Schrödinger operators
Author(s) -
Dong Jianfeng,
Liu Yu
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201000067
Subject(s) - mathematics , order (exchange) , space (punctuation) , type (biology) , operator (biology) , class (philosophy) , combinatorics , mathematical physics , chemistry , philosophy , ecology , linguistics , biochemistry , finance , repressor , epistemology , gene , transcription factor , economics , biology
Let L = −Δ + V be a Schrödinger operator on \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^n$\end{document} ( n ≥ 3), where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$V \not\equiv 0$\end{document} is a nonnegative potential belonging to certain reverse Hölder class B s for \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$s \ge \frac{n}{2}$\end{document} . In this article, we prove the boundedness of some integral operators related to L , such as L −1 ∇ 2 , L −1 V and L −1 ( − Δ) on the space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$BMO_L(\mathbb {R}^n)$\end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom