z-logo
Premium
Bernstein type theorems for complete submanifolds in space forms
Author(s) -
Fu HaiPing
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.201000039
Subject(s) - mathematics , hyperplane , affine space , euclidean space , norm (philosophy) , type (biology) , mean curvature , affine transformation , second fundamental form , space (punctuation) , pure mathematics , euclidean geometry , combinatorics , mathematical analysis , curvature , geometry , ecology , linguistics , philosophy , political science , law , biology
We study the Bernstein type problem for complete submanifolds in the space forms. In particular, we prove that any complete super stable minimal submanifolds in an ( n + p )‐dimensional Euclidean space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^{n+p}\,(n\le 5)$\end{document} with finite L 1 norm of the second fundamental form must be affine n ‐dimensional planes. We also prove that any complete noncompact weakly stable hypersurfaces in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^{n+1}\,(n\le 5)$\end{document} with constant mean curvature and finite L d  ( d = 1, 2, 3) norm of traceless second fundamental form must be hyperplanes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom