z-logo
Premium
The Dirichlet problem for non‐divergence parabolic equations with discontinuous in time coefficients
Author(s) -
Kozlov Vladimir,
Nazarov Alexander
Publication year - 2009
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200910796
Subject(s) - mathematics , sobolev space , divergence (linguistics) , mathematical analysis , bounded function , parabolic partial differential equation , dirichlet problem , domain (mathematical analysis) , boundary (topology) , dirichlet boundary condition , dirichlet distribution , space (punctuation) , boundary value problem , partial differential equation , philosophy , linguistics
We consider the Dirichlet problem for non‐divergence parabolic equation with discontinuous in t coefficients in a half space. The main result is weighted coercive estimates of solutions in anisotropic Sobolev spaces. We give an application of this result to linear and quasi‐linear parabolic equations in a bounded domain. In particular, if the boundary is of class C 1, δ , δ ∈ [0, 1], then we present a coercive estimate of solutions in weighted anisotropic Sobolev spaces, where the weight is a power of the distance to the boundary (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom