Premium
Point value characterizations and related results in the full Colombeau algebras \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${{\mathcal {G}}^e(\Omega )}$\end{document} and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${{\mathcal {G}}^d(\Omega )}$\end{document}
Author(s) -
Nigsch Eduard A.
Publication year - 2013
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200910280
Subject(s) - omega , mathematics , combinatorics , algebra over a field , mathematical physics , physics , pure mathematics , quantum mechanics
We present a point value characterization for elements of the elementary full Colombeau algebra \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal {G}}^e(\Omega )$\end{document} and the diffeomorphism invariant full Colombeau algebra \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {G}^d(\Omega )$\end{document} . Moreover, several results from the special algebra \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal {G}}^s(\Omega )$\end{document} about generalized numbers and invertibility are extended to the elementary full algebra.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom