Premium
Generalized Hankel operators on the Fock space II
Author(s) -
Schneider Georg,
Schneider Kristan
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200910149
Subject(s) - holomorphic function , mathematics , combinatorics , space (punctuation) , connection (principal bundle) , projection (relational algebra) , fock space , algebra over a field , mathematical physics , physics , mathematical analysis , geometry , pure mathematics , quantum mechanics , algorithm , philosophy , linguistics
In this paper we study boundedness of generalized Hankel operators of the form \documentclass{article}\usepackage{amssymb,mathrsfs}\begin{document}\pagestyle{empty}${\rm H}_{{\overline{z}}^k}^l: {\mathscr F}^2\big (|z|^2\big )\rightarrow L^2\big (|z|^2\big )$\end{document} and thereby extend our results from 10. Here, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\rm H_{{\overline{z}}^k}^l(f):=(\rm Id-\rm P_l)\big (\overline{z}^k f\big )$\end{document} and P l is the projection onto \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$A^2_l\big (\mathbb C,| z|^2\big ):=\rm cl\big (\rm span\lbrace \overline{z} ^mz^n\,|\,m,n\in \mathbb N,\,m\le l\rbrace \big )$\end{document} . Additionally, we extend our results to general conjugate‐holomorphic L 2 symbols. The arguments applied show a tight connection between operator theory and combinatorics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom