Premium
Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces
Author(s) -
Bereanu Cristian,
Jebelean Petru,
Mawhin Jean
Publication year - 2010
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200910083
Subject(s) - mathematics , minkowski space , ball (mathematics) , mean curvature , euclidean geometry , neumann boundary condition , mathematical analysis , curvature , pure mathematics , domain (mathematical analysis) , non euclidean geometry , boundary value problem , mathematical physics , geometry
In this paper we study the existence of radial solutions for Neumann problems in a ball and in an annular domain, associated to mean curvature operators in Euclidean and Minkowski spaces. Our approach relies on the Leray‐Schauder degree together with some fixed point reformulations of our nonlinear Neumann boundary value problems (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)