Premium
Oscillation criteria for fourth‐order differential equations with middle term
Author(s) -
Amara Jamel Ben
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200910082
Subject(s) - mathematics , oscillation (cell signaling) , term (time) , differential equation , order (exchange) , mathematical analysis , exponential function , differential (mechanical device) , exponential growth , oscillation theory , linear differential equation , physics , exact differential equation , quantum mechanics , genetics , finance , economics , biology , thermodynamics
Oscillation criteria for self‐adjoint fourth‐order differential equations\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ (r(x)y^{\prime \prime })^{\prime \prime }-(q(x)y^{\prime })^{\prime }= p(x)y $$ \end{document} were established for various conditions on the coefficients r ( x ) > 0, q ( x ) and p ( x ). However, most of these results deal with the case when lim x → ∞ ∫ x 1 q ( s ) ds < +∞. In this note we give a new oscillation criterion in the case when this condition is not fulfilled, in particular when q ( x )↗ + ∞ (even with exponential growth).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom