Premium
On boundary correspondences under quasiconformal harmonic mappings between smooth Jordan domains
Author(s) -
Kalaj David
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200910053
Subject(s) - mathematics , boundary (topology) , unit disk , lipschitz continuity , mathematical analysis , domain (mathematical analysis) , constant (computer programming) , harmonic , harmonic function , pure mathematics , quasiconformal mapping , lipschitz domain , boundary values , function (biology) , characterization (materials science) , unit (ring theory) , hilbert transform , boundary value problem , physics , materials science , quantum mechanics , evolutionary biology , computer science , biology , programming language , nanotechnology , statistics , mathematics education , spectral density
A quantitative version of an inequality obtained in [8, Theorem 2.1] is given. More precisely, for normalized K quasiconformal (q.c.) harmonic mappings of the unit disk onto a Jordan domain Ω ∈ C 1, μ (0 < μ ≤ 1), we give an explicit Lipschitz constant depending on the structure of Ω and on K . In addition, we give a characterization of q.c. harmonic mappings of the unit disk onto an arbitrary Jordan domain with C 2, α boundary in terms of the boundary function using the Hilbert transform. Moreover, a sharp explicit quasiconformal constant is given in terms of the boundary function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom