z-logo
Premium
Gâteaux derivatives and their applications to approximation in Lorentz spaces Γ p,w
Author(s) -
Ciesielski Maciej,
Kamińska Anna,
Płuciennik Ryszard
Publication year - 2009
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810798
Subject(s) - mathematics , lorentz transformation , convexity , unit sphere , convex function , lorentz space , combinatorics , function (biology) , regular polygon , mathematical analysis , mathematical physics , geometry , physics , quantum mechanics , financial economics , economics , biology , evolutionary biology
We establish the formulas of the left‐ and right‐hand Gâteaux derivatives in the Lorentz spaces Γ p,w = { f : ∫ 0 α ( f **) p w < ∞}, where 1 ≤ p < ∞, w is a nonnegative locally integrable weight function and f ** is a maximal function of the decreasing rearrangement f * of a measurable function f on (0, α ), 0 < α ≤ ∞. We also find a general form of any supporting functional for each function from Γ p,w , and the necessary and sufficient conditions for which a spherical element of Γ p,w is a smooth point of the unit ball in Γ p,w . We show that strict convexity of the Lorentz spaces Γ p,w is equivalent to 1 < p < ∞ and to the condition ∫ 0 ∞ w = ∞. Finally we apply the obtained characterizations to studies the best approximation elements for each function f ∈ Γ p,w from any convex set K ⊂ Γ p,w (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom