z-logo
Premium
Belohorec‐type oscillation theorem for second order sublinear dynamic equations on time scales
Author(s) -
Erbe Lynn,
Jia Baoguo,
Peterson Allan
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810281
Subject(s) - sublinear function , mathematics , oscillation (cell signaling) , order (exchange) , dynamic equation , type (biology) , mathematical physics , combinatorics , mathematical analysis , physics , quantum mechanics , nonlinear system , chemistry , ecology , biochemistry , finance , economics , biology
Consider the Emden‐Fowler sublinear dynamic equation 0.1\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$$ x^{\Delta \Delta }(t)+p(t)|x(\sigma (t))|^{\alpha } \mbox{sgn}\; x(\sigma (t))=0, $$\end{document} where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$p\in C(\mathbb{T},R)$\end{document} , where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb{T}$\end{document} is a time scale, 0 < α < 1. When p ( t ) is allowed to take on negative values, we obtain a Belohorec‐type oscillation theorem for (0.1). As an application, we get that the sublinear difference equation 0.2\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$$ \Delta ^2x(n)+p(n) |x(n+1)|^{\alpha } \mbox{sgn} \; x(n+1)=0, $$\end{document} is oscillatory, if\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \sum ^{\infty } n^\alpha p(n) =\infty, $$ \end{document} and the sublinear q‐difference equation 0.3\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$$ x^{\Delta \Delta }(t)+p(t)|x(qt)|^\alpha \mbox{sgn}\;x(qt)=0. $$\end{document} where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$t\in q^{\mathbb{N}_0}, q>1$\end{document} , is oscillatory, if\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \int ^\infty _1 t^\alpha p(t)\,\Delta t =\infty. $$ \end{document}

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom