z-logo
Premium
Characterizing the Phragmén‐Lindelöf condition for evolution on algebraic curves
Author(s) -
Boiti Chiara,
Meise Reinhold
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810280
Subject(s) - algebraic number , mathematics , characterization (materials science) , combinatorics , algebraic curve , pure mathematics , physics , mathematical analysis , optics
For an algebraic curve V in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb C}^k \times {\mathbb C}^n$\end{document} it is investigated when it satisfies the Phragmén‐Lindelöf condition PL(ω) of evolution in certain classes of ultradifferentiable functions. Necessary as well as sufficient conditions are obtained which lead to a complete characterization for curves in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb C}\times {\mathbb C}^n$\end{document} . Some examples illustrate how these results can be applied. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom