z-logo
Premium
Finite speed of propagation in 1‐D degenerate Keller‐Segel system
Author(s) -
Sugiyama Yoshie
Publication year - 2012
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810258
Subject(s) - combinatorics , mathematics , type (biology) , degenerate energy levels , lipschitz continuity , space (punctuation) , product (mathematics) , physics , mathematical physics , mathematical analysis , geometry , quantum mechanics , ecology , biology , linguistics , philosophy
We consider the following Keller‐Segel system of degenerate type: (KS): \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\frac{\partial u}{\partial t} = \frac{\partial }{\partial x} \big ( \frac{\partial u^m}{\partial x} - u^{q-1} \frac{\partial v}{\partial x} \big ), x \in {\mathbb R}, t>0, 0 = \frac{\partial ^2 v}{\partial x^2} - \gamma v + u, x \in {\mathbb R}, t>0, u(x,0) = u_0(x), x \in {\mathbb R},$\end{document} where m > 1, γ > 0,  q ⩾ 2 m . We shall first construct a weak solution u ( x , t ) of (KS) such that u m − 1 is Lipschitz continuous and such that \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\displaystyle u^{m-1+\delta }$\end{document} for δ > 0 is of class C 1 with respect to the space variable x . As a by‐product, we prove the property of finite speed of propagation of a weak solution u ( x , t ) of (KS), i.e., that a weak solution u ( x , t ) of (KS) has a compact support in x for all t > 0 if the initial data u 0 ( x ) has a compact support in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb R}$\end{document} . We also give both upper and lower bounds of the interface of the weak solution u of (KS).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom