z-logo
Premium
The Schur multiplicative and harmonic convexities of the complete symmetric function
Author(s) -
Chu Y.M.,
Wang G.D.,
Zhang X.H.
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810197
Subject(s) - multiplicative function , combinatorics , mathematics , majorization , function (biology) , harmonic , mathematical physics , physics , mathematical analysis , quantum mechanics , evolutionary biology , biology
This paper investigates the Schur multiplicative and harmonic convexities of the complete symmetric function \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$F_n(x,r)=\sum _{i_1+i_2+\cdots +i_n=r}x_1^{i_1}x_2^{i_2}\ldots x_n^{i_n}$\end{document} and the function \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\varphi _n(x,r)=\frac{F_n(x,r)}{F_n(x,r-1)}$\end{document} , where i 1 , i 2 , …, i n are nonnegative integers and r ⩾ 1. As applications, some analytic inequalities are established by use of the theory of majorization. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom