z-logo
Premium
Generalized Hankel operators on the Fock space
Author(s) -
Schneider Georg,
Schneider Kristan A.
Publication year - 2009
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810169
Subject(s) - mathematics , holomorphic function , fock space , bounded function , generalization , hankel transform , projection (relational algebra) , space (punctuation) , bar (unit) , pure mathematics , section (typography) , operator (biology) , combinatorics , mathematical analysis , algorithm , physics , computer science , quantum mechanics , biochemistry , chemistry , bessel function , repressor , meteorology , transcription factor , gene , operating system
In this paper we study generalized Hankel operators ofthe form : ℱ 2 (| z | 2 ) → L 2 (| z | 2 ). Here, ( f ):= (Id–P l )( $ \bar z $ k f ) and P l is the projection onto A l 2 (ℂ, | z | 2 ):= cl(span{ $ \bar z $ m z n | m , n ∈ N , m ≤ l }). The investigations in this article extend the ones in [11] and [6], where the special cases l = 0 and l = 1 are considered, respectively. The main result is that the operators are not bounded for l < k – 1. The proof relies on a combinatoric argument and a generalization to general conjugate holomorphic L 2 symbols, generalizing arguments from [6], seems possible and is planned for future work (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom