z-logo
Premium
A Cohen type inequality for Fourier expansions of orthogonal polynomials with a non‐discrete Gegenbauer‐Sobolev inner product
Author(s) -
Fejzullahu Bujar Xh.
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810143
Subject(s) - mathematics , orthogonal polynomials , product (mathematics) , sobolev space , gegenbauer polynomials , divergence (linguistics) , fourier transform , type (biology) , sobolev inequality , jacobi polynomials , pure mathematics , mathematical analysis , classical orthogonal polynomials , geometry , ecology , linguistics , philosophy , biology
Let d μ( x ) = (1 − x 2 ) α−1/2 dx ,α> − 1/2, be the Gegenbauer measure on the interval [ − 1, 1] and introduce the non‐discrete Sobolev inner product\documentclass{article}\begin{document}\pagestyle{empty}$$ \langle f,g\rangle = \int_{-1}^{1}f(x) g(x)\, d\mu (x)+ \lambda \int_{-1}^{1}f^{\prime }(x) g^{\prime }(x)\, d\mu (x) $$\end{document} where λ>0. In this paper we will prove a Cohen type inequality for Fourier expansions in terms of the polynomials orthogonal with respect to the above inner product. Results on divergence for Cesàro means of Gegenbauer‐Sobolev expansions are deduced. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom