z-logo
Premium
On the deficiency index of even order symmetric differential expressions with essential spectrum
Author(s) -
Roque Marian P.,
Schultze Bernd
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810141
Subject(s) - mathematics , spectrum (functional analysis) , order (exchange) , essential spectrum , combinatorics , differential (mechanical device) , mathematical physics , pure mathematics , physics , quantum mechanics , thermodynamics , finance , economics
It shall be shown that for every n , \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$k \in \mathbb {N}$\end{document} with n ⩽ k < 2 n , there exist real symmetric differential expressions M of order 2 n with nonempty essential spectrum such that d ( M ) = k . © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom