z-logo
Premium
L p boundedness for commutators of parabolic Littlewood‐Paley operators with rough kernels
Author(s) -
Chen Dongxiang,
Lu Shanzhen
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810139
Subject(s) - mathematics , order (exchange) , kernel (algebra) , combinatorics , operator (biology) , block (permutation group theory) , center (category theory) , crystallography , chemistry , biochemistry , finance , repressor , transcription factor , economics , gene
In this paper, L p bounds for the m ‐th order commutators of the parabolic Littlewood‐Paley operator are obtained, provided that the kernel Ω belongs to L (log + L ) m + 1/2 ( S n − 1 ) or \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$B_q^{0,m-1/2}(S^{n-1})$\end{document} (certain block spaces) for center q > 1, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$1 < p <\infty , m\in \mathbb {N}$\end{document} . © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here