z-logo
Premium
L p boundedness for commutators of parabolic Littlewood‐Paley operators with rough kernels
Author(s) -
Chen Dongxiang,
Lu Shanzhen
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810139
Subject(s) - mathematics , order (exchange) , kernel (algebra) , combinatorics , operator (biology) , block (permutation group theory) , center (category theory) , crystallography , chemistry , biochemistry , finance , repressor , transcription factor , economics , gene
In this paper, L p bounds for the m ‐th order commutators of the parabolic Littlewood‐Paley operator are obtained, provided that the kernel Ω belongs to L (log + L ) m + 1/2 ( S n − 1 ) or \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$B_q^{0,m-1/2}(S^{n-1})$\end{document} (certain block spaces) for center q > 1, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$1 < p <\infty , m\in \mathbb {N}$\end{document} . © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom