z-logo
Premium
Nonlinear degenerate parabolic equations with time dependent singular coefficients
Author(s) -
Ahmetolan S.,
Cavdar S.
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810135
Subject(s) - mathematics , ball (mathematics) , degenerate energy levels , nonlinear system , omega , mathematical analysis , mathematical physics , physics , quantum mechanics
We are concerned with the nonexistence of positive solutions of the nonlinear parabolic partial differential equations in a cylinder Ω × (0, T ) with initial condition u (., 0) = u 0 (.) ⩾ 0 and vanishing on the boundary ∂Ω × (0, T ), given by\documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty} $$ \frac{\partial u}{\partial t}=u^\alpha \nabla \cdot \big (u^\beta |\nabla u|^{p-2}\nabla u\big )+V(x,t)u^{p-1+\alpha +\beta } $$ \end{document} where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\Omega \in \mathbf {R}^N$\end{document} (resp. a Carnot Carathéodory metric ball in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbf {R}^{2N+1})$\end{document} with smooth boundary and the time dependent singular potential function V ( x , t ) ∈ L 1 loc (Ω × (0, T )), \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\alpha , \beta \in \mathbf {R}$\end{document} , 1 < p < N , p − 1 + α + β > 0. We find the best lower bounds for p + β and provide proofs for the nonexistence of positive solutions. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom