z-logo
Premium
Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic
Author(s) -
Samko Natasha,
Vakulov Boris
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810113
Subject(s) - mathematics , order (exchange) , space (punctuation) , variable (mathematics) , combinatorics , cover (algebra) , unit sphere , mathematical analysis , unit (ring theory) , mechanical engineering , linguistics , philosophy , mathematics education , finance , engineering , economics
We consider non‐standard generalized Hölder spaces of functions f on the unit sphere \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}${\mathbb S}^{n-1} $\end{document} in \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}${\mathbb R}^n $\end{document} , whose local continuity modulus Ω( f , x , h ) at a point \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$x\in {\mathbb S}^{n-1} $\end{document} has a dominant ω( x , h ) which may vary from point to point. We establish theorems on the mapping properties of spherical potential operators of variable order α( x ), from such a variable generalized Hölder space to another one with a “better” dominant ω α ( x , h ) = h ℜα( x ) ω( x , h ), and similar mapping properties of spherical hypersingular integrals of variable order α( x ) from such a space into the space with “worse” dominant ω −α ( x , h ) = h −ℜα( x ) ω( x , h ). We admit variable complex valued orders α( x ) which may vanish at a set of measure zero. To cover this case, we consider the action of potential operators to weighted generalized Hölder spaces with the weight α( x ). © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom