z-logo
Premium
Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic
Author(s) -
Samko Natasha,
Vakulov Boris
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810113
Subject(s) - mathematics , order (exchange) , space (punctuation) , variable (mathematics) , combinatorics , cover (algebra) , unit sphere , mathematical analysis , unit (ring theory) , mechanical engineering , linguistics , philosophy , mathematics education , finance , engineering , economics
We consider non‐standard generalized Hölder spaces of functions f on the unit sphere \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}${\mathbb S}^{n-1} $\end{document} in \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}${\mathbb R}^n $\end{document} , whose local continuity modulus Ω( f , x , h ) at a point \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$x\in {\mathbb S}^{n-1} $\end{document} has a dominant ω( x , h ) which may vary from point to point. We establish theorems on the mapping properties of spherical potential operators of variable order α( x ), from such a variable generalized Hölder space to another one with a “better” dominant ω α ( x , h ) = h ℜα( x ) ω( x , h ), and similar mapping properties of spherical hypersingular integrals of variable order α( x ) from such a space into the space with “worse” dominant ω −α ( x , h ) = h −ℜα( x ) ω( x , h ). We admit variable complex valued orders α( x ) which may vanish at a set of measure zero. To cover this case, we consider the action of potential operators to weighted generalized Hölder spaces with the weight α( x ). © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here