z-logo
Premium
Essential spectra of singular matrix differential operators of mixed order in the limit circle case
Author(s) -
Qi Jiangang,
Chen Shaozhu
Publication year - 2011
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200810062
Subject(s) - mathematics , differential operator , hamiltonian (control theory) , limit (mathematics) , spectrum (functional analysis) , operator (biology) , pure mathematics , integrable system , essential spectrum , mathematical analysis , matrix (chemical analysis) , spectral theory of ordinary differential equations , singular value , order (exchange) , mathematical physics , eigenvalues and eigenvectors , quantum mechanics , quasinormal operator , physics , finite rank operator , materials science , repressor , banach space , chemistry , composite material , mathematical optimization , biochemistry , transcription factor , finance , economics , gene
The present paper is concerned with the essential spectrum of the singular matrix differential operator of mixed order\documentclass{article}\usepackage{amsmath}\begin{document}\pagestyle{empty}$$ \begin{eqnarray*} T=\begin{pmatrix} -Dp(t)D+q(t) & -D h(t)\\[6pt] \bar{h}(t) D & d(t) \end{pmatrix} \end{eqnarray*} $$\end{document} over the interval ( a , b ), where D = d / dt . It is shown that if the coefficients are locally integrable functions and T is in the limit circle case, then the essential spectrum of T is given by the essential range of ${{p(t)d(t)-\vert h(t)\vert^2}\over{p(t)}} $\end{document} . The main idea is to transform the original spectral problem into a spectral problem of a singular Hamiltonian differential operator so that the classical Titchmarsh‐Weyl theory can apply. The approach used here can be applied to many other cases. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom