z-logo
Premium
On a formula for the spectral flow and its applications
Author(s) -
Benevieri Pierluigi,
Piccione Paolo
Publication year - 2010
Publication title -
mathematische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 50
eISSN - 1522-2616
pISSN - 0025-584X
DOI - 10.1002/mana.200710232
Subject(s) - mathematics , linear subspace , hilbert space , flow (mathematics) , pure mathematics , geodesic , path (computing) , subspace topology , mathematical analysis , geometry , computer science , programming language
We consider a continuous path of bounded symmetric Fredholm bilinear forms with arbitrary endpoints on a real Hilbert space, and we prove a formula that gives the spectral flow of the path in terms of the spectral flow of the restriction to a finite codimensional closed subspace. We also discuss the case of restrictions to a continuous path of finite codimensional closed subspaces. As an application of the formula, we introduce the notion of spectral flow for a periodic semi‐Riemannian geodesic, and we compute its value in terms of the Maslov index (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom